skip to main content


Search for: All records

Creators/Authors contains: "Yang, Taimin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Modifiers are commonly used in natural, biological, and synthetic crystallization to tailor the growth of diverse materials. Here, we identify tautomers as a new class of modifiers where the dynamic interconversion between solute and its corresponding tautomer(s) produces native crystal growth inhibitors. The macroscopic and microscopic effects imposed by inhibitor-crystal interactions reveal dual mechanisms of inhibition where tautomer occlusion within crystals that leads to natural bending, tunes elastic modulus, and selectively alters the rate of crystal dissolution. Our study focuses on ammonium urate crystallization and shows that the keto-enol form of urate, which exists as a minor tautomer, is a potent inhibitor that nearly suppresses crystal growth at select solution alkalinity and supersaturation. The generalizability of this phenomenon is demonstrated for two additional tautomers with relevance to biological systems and pharmaceuticals. These findings offer potential routes in crystal engineering to strategically control the mechanical or physicochemical properties of tautomeric materials.

     
    more » « less
  2. Abstract

    Lithium‐air batteries based on CO2reactant (Li–CO2) have recently been of interest because it has been found that reversible Li/CO2electrochemistry is feasible. In this study, a new medium‐entropy cathode catalyst, (NbTa)0.5BiS3, that enables the reversible electrochemistry to operate at high rates is presented. This medium entropy cathode catalyst is combined with an ionic liquid‐based electrolyte blend to give a Li–CO2battery that operates at high current density of 5000 mA g−1and capacity of 5000 mAh g−1for up to 125 cycles, far exceeding reported values in the literature for this type of battery. The higher rate performance is believed to be due to the greater stability of the multi‐element (NbTa)0.5BiS3catalyst because of its higher entropy compared to previously used catalysts with a smaller number of elements with lower entropies. Evidence for this comes from computational studies giving very low surface energies (high surface stability) for (NbTa)0.5BiS3and transmission electron microscopystudies showing the structure being retained after cycling. In addition, the calculations indicate that Nb‐terminated surface promotes Li–CO2electrochemistry resulting in Li2CO3and carbon formation, consistent with the products found in the cell. These results open new direction to design and develop high‐performance Li–CO2batteries.

     
    more » « less